Diversity Searcher is a tool originally developed to help analyse diversity in news media texts. It relies on a form of automated content analysis and thus rests on prior assumptions and depends on certain design choices related to diversity and fairness. One such design choice is the external knowledge source(s) used. In this article, we discuss implications that these sources can have on the results of content analysis. We compare two data sources that Diversity Searcher has worked with - DBpedia and Wikidata - with respect to their ontological coverage and diversity, and describe implications for the resulting analyses of text corpora. We describe a case study of the relative over- or under-representation of Belgian political parties between 1990 and 2020 in the English-language DBpedia, the Dutch-language DBpedia, and Wikidata, and highlight the many decisions needed with regard to the design of this data analysis and the assumptions behind it, as well as implications from the results. In particular, we came across a staggering over-representation of the political right in the English-language DBpedia.
translated by 谷歌翻译
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
自我监督的学习允许AI系统使用不需要昂贵的标签的任务从大量数据中学习有效表示。模式崩溃,即为所有输入产生相同表示形式的模型,是许多自我监督学习方法的核心问题,可以使自我监督任务(例如匹配输入的变形变体)无效。在本文中,我们认为,同一输入的替代潜在表示之间信息最大化的直接应用自然解决了崩溃问题并实现了竞争性的经验结果。我们提出了一种自我监督的学习方法Corinfomax,该方法使用了基于二阶统计的共同信息度量,以反映其参数之间的相关性水平。在同一输入的替代表示之间最大化此相关信息度量有两个目的:(1)它通过生成具有非脱位协方差的特征向量来避免崩溃问题; (2)通过增加它们之间的线性依赖性,它在替代表示之间建立了相关性。提出的信息最大化客观的近似简化为基于欧几里得距离的目标函数,该目标函数由特征协方差矩阵的对数确定因素正规化。正则术语是针对特征空间退化的自然障碍。因此,除了避免完全输出崩溃到一个点外,提出的方法还通过鼓励信息在整个特征空间中的传播来防止尺寸崩溃。数值实验表明,相对于最先进的SSL方法,Corinfomax取得更好或竞争性的性能结果。
translated by 谷歌翻译
对于正交多访问(OMA)系统,服务的用户设备(UES)的数量仅限于可用的正交资源的数量。另一方面,非正交多访问(NOMA)方案允许多个UES使用相同的正交资源。这种额外的自由度为资源分配带来了新的挑战。缓冲状态信息(BSI),例如等待传输的数据包的大小和年龄,可用于改善OMA系统中的调度。在本文中,我们研究了BSI对上行链路多载波NOMA场景中集中调度程序的性能的影响,UE具有各种数据速率和延迟要求。为了处理将UES分配给资源的大型组合空间,我们提出了一个基于Actor-Critic-Critic强化学习纳入BSI的新型调度程序。使用诺基亚的“无线套件”进行培训和评估。我们提出了各种新颖的技术来稳定和加快训练。建议的调度程序优于基准调度程序。
translated by 谷歌翻译
自我监督的预审查能够为各种视觉文档理解(VDU)任务产生可转移的表示。但是,尚未研究此类表示在测试时间时适应新分配变化的能力。我们提出了Docta,这是一种用于文档的新型测试时间适应方法,该方法通过掩盖的视觉语言建模来利用交叉模式自我观察学习以及伪标签,以适应\ textit {source}域中学习的模型,以使其{source}域中为一个未标记的\ textit {textit {目标}域在测试时间。我们还使用现有的公共数据集介绍了新的基准测试,用于各种VDU任务,包括实体识别,键值提取和文档视觉问题回答任务,其中Doctta将源模型性能提高到1.79 \%(F1分数),3.43 \%(3.43 \%)(F1得分)和17.68 \%(ANLS得分),同时大大降低了目标数据的校准误差。
translated by 谷歌翻译
学习数据背后的因果结构对于改善概括和获得高质量的解释是无价的。我们提出了一个新颖的框架,不变结构学习(ISL),旨在通过利用概括作为指示来改善因果结构发现。 ISL将数据分配到不同的环境中,并通过施加一致性约束来学习一个在不同环境中不变的结构。然后,聚集机制基于图形结构选择最佳分类器,该图形结构与从单个环境中学到的结构相比,更准确地反映了数据中的因果机制。此外,我们将ISL扩展到一个自制的学习环境,在该设置中,准确的因果结构发现不依赖任何标签。这种自我监督的ISL通过迭代设置不同的节点作为目标来利用不变的因果关系。在合成和现实世界数据集上,我们证明了ISL准确地发现因果结构,优于替代方法,并且对具有显着分布变化的数据集产生了卓越的概括。
translated by 谷歌翻译
现实世界中的时间序列数据集经常违反预测的标准监督学习的假设 - 它们的分布会随着时间的推移而发展,从而使传统的培训和模型选择程序均优化。在本文中,我们提出了一种新颖的方法,即自适应预测(SAF),以修改时间序列预测模型的培训,以通过此类非平稳时间序列数据提高其在预测任务上的性能。 SAF在基于“背景”的预测之前集成了自适应阶段,即在时间后退预测掩盖的输入。这是一种测试时间培训的形式,在执行预测任务之前,在测试样本上会在测试样本上创建一个自我监督的学习问题。通过这种方式,我们的方法可以有效地适应编码表示的分布,从而导致卓越的概括。 SAF可以与任何基于经典的编码器码头架构架构(例如经常性神经网络或基于注意力的体系结构)集成。关于众所周知,众所周知的非统计数据(例如医疗保健和金融)的域中的合成和现实数据集,我们证明了SAF在提高预测准确性方面具有重大好处。
translated by 谷歌翻译
就像其他少量学习问题一样,很少拍摄的细分旨在最大限度地减少手动注释的需求,这在分割任务中特别昂贵。即使少量拍摄设置降低了新型测试类的这种成本,仍然需要注释培训数据。为了减轻这种需求,我们提出了一种自我监督的培训方法,用于学习几次射门分割模型。我们首先使用无监督的显着性估计来获得图像上的伪掩码。然后,我们将在不同的伪掩模的不同分割和增强图像的不同分裂上培训一个简单的原型模型。我们广泛的实验表明,该方法达到了有希望的结果,突出了自我监督培训的潜力。据我们所知,这是第一个解决自然图像上无监督的少量分割问题的第一项工作。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
我们提出了一种新颖的培训方法,将规则整合到深度学习中,以规则的优势在推理中控制。具有可控规则表示(DeameCTRL)的深神经网络将规则编码器包含到与基于规则的目标耦合的模型中,从而实现了决策的共享表示。 DeameCTRL对数据类型和模型架构无关。它可以应用于为输入和输出定义的任何规则。 DeameCTRL的关键方面是它不需要再次调节规则强度 - 在推理时,可以基于精度与规则验证比的所需操作点来调整它。在纳入规则的现实域名是关键的 - 例如物理,零售和医疗保健 - 我们展示了DeepCTRL在深度学习教学规则方面的有效性。 DeepCTRL通过显着提高规则验证率,提高了训练型模型的信任和可靠性,同时还提供了下游任务的准确性收益。此外,DeameCtrl还支持新颖的用例,例如数据样本的规则,以及基于数据集之间的共享规则的无监督适应。
translated by 谷歌翻译